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Abstract—A solution method is derived for determining the free-edge stresses in composite
laminates. The method is based on expanding stress functions in terms of a harmonic series in the
thickness direction. Using the principle of minimum complementary energy, a system of ordinary
differential equations is derived for the distribution in the width direction. Cross-ply and angle-ply
laminates are examined to establish the validity of the solution. Eight- and 16-ply quasi-isotropic
laminates are also examined to demonstrate a convergence criterion based on average stress. The
method proves to be a relatively simple and efficient approach for this problem.

1. INTRODUCTION

Determination of the free-edge stress is an important step in preventing delamination from
initiating at the free edge. Unfortunately, closed-form solutions for the stresses do not exist,
and the steep stress gradients that typically occur in these regions challenge conventional
numerical methods. Although free-edges can occur in geometrically complex situations,
most researchers have concentrated on the case of a long, uniform laminate, subjected to
a uniaxial mechanical strain, as shown in Fig. 1. This specialized form of the problem will
be addressed in the current analysis, with residual thermal stresses also considered.

From an engineering viewpoint, an analysis method is desired which can be applied to
structural laminates. Structural laminates will include a mixture of cross-plies (0° and 90°)
and angle plies, and the total number of plies may be large. A candidate analysis method
should require a minimum of input data (and thus analyst’s time) and computer resources.
It should yield the full stress field in the region near the edge, or at least the complete stress
state at each ply interface. Finally, there must be some method of establishing convergence
of the stresses in terms of some error metric. Because a closed-form solution to this problem
cannot be obtained, a series solution (with either continuous or piece-wise basis functions)
of some type must be used. Achieving an arbitrary degree of convergence with a series
solution requires that the number of degrees-of-freedom in the approximation can be
arbitrarily increased.
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Fig. 1. Geometry and coordinate system for laminate free-edge problem.
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The analysis of the stress-state near the free-edge of a laminate has generated a large
body of literature. A review of the early literature on the subject is given by Salamon (1980).
A more recent review is given by Sandhu et al. (1991). Several distinct approaches for
finding approximate solutions for the stress distribution have been suggested. These include
displacement-based finite difference (Pipes et al., 1970 ; Atlus ez al., 1980) and finite element
(Wang and Crossman, 1977; Whitcomb and Raju, 1983, 1984) methods. Convergence of
these methods is slow, requiring fine grids and thus large computer resources to resolve the
stresses. Spilker (1980) demonstrated the importance of exactly satisfying the traction-free
boundary conditions at the edge in order to ensure convergence. The advantages to be
gained by explicitly satisfying these conditions has led to a variety of mixed formulation
(Pagano, 1978) and stress-based methods. Rybicki (1971) used an equilibrium finite element
analysis in which a stress function was described by a series of Hermitian interpolation
polynomials within each discrete element. Tang (1975) used a power series expansion in
the thickness coordinate of the stress function. Substituting terms of the series into the
compatibility equations leads to a set of ordinary differential equations in the width coor-
dinate. The present method builds on this approach, but will be formulated in a way that
allows one to analyze more general stacking sequences and establish convergence. In
addition, Tang satisfied the boundary conditions only in an average sense. Bar-Yoseph and
Pian (1981) expanded the stresses using Legendre polynomials in the thickness direction.
By applying the principle of minimum complimentary energy, a set of ordinary differential
equations in the width coordinate was obtained. The formulation by Bar-Yoseph and Pian
was specialized for the case of a [+ 6] laminate, and it is not apparent how to expand
the approach into a general analysis tool. Kassapoglou and Lagace (1986) determined
distributions for the stress functions based on integrated force and moment equilibrium.
The resulting algorithm, referred to as the force-balance method, is efficient, with solution
time increasing slowly with the number of plies in the laminate. Unfortunately, the approach
leads to the assumption that the in-plane stresses are constant through the thickness of a
given ply. A solution to an elasticity problem should not impose artificial restrictions on
the stress distributions unless it can be established that the restrictions have a negligible
effect on the results. It will be shown later in this paper that the assumption of constant in-
plane stresses leads to interlaminar stress distributions that are substantially different from
those obtained by less restrictive methods.

Yin (1991) approximated the stress functions using piecewise polynomial approxi-
mations in the thickness coordinate. In this approach, the stress functions are continuous
over a layer, and continuity of the interlaminar stress is enforced at the layer interfaces.
This method also leads to a system of ordinary differential equations in the width coordinate.
Although the analysis given by Yin has most of the desired features (general laminate can
be analyzed, full-field solution for the stresses are available and convergence could be
established by subdividing layers), it is desirable to have a simpler method available.

The singular nature of the stresses at a ply interface was studied by Wang and Choi
(1982a). Once the form of the singularity had been established, a detailed description of
the local stress field was possible (Wang and Choi, 1982b). The present method does not
include a singular stress field. Kassapoglou and Lagace (1986) and Wang and Crossman
(1977) have discussed the utility of solutions that do not include the singularity. The
singularities arise from assuming a ply is a homogeneous orthotropic body. In reality, the ply
is heterogeneous (fibers and matrix) at the same dimensional scale at which the singularity is
important. Therefore, useful engineering information can be obtained from methods which
do not include this feature.

2. THEORETICAL APPROACH

In the solution scheme that follows, approximate series expressions for the stresses
within a composite laminate will be obtained. Stress functions are used to ensure that stress
equilibrium is satisfied everywhere. A variational technique based on the complimentary
strain energy is applied so that compatibility will be satisfied in an integral sense. The stress
functions are assumed to be separable functions in the y and z coordinates. The z function
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is an assumed series, while the y functions are determined by satisfying ordinary differential
equations that result from application of the variational method. All traction boundary
conditions will be satisfied exactly. Classical laminate theory is approximated in the interior
of the laminate. By taking a sufficiently large number of terms in the z direction, com-
patibility can be approximated to the desired level of accuracy. The basic theory is applicable
to finite width laminates with arbitrary stacking sequences. However, for simplicity, the
solution has been specialized for wide laminates (width >» thickness), with symmetric stack-
ing sequences.

Consider a composite laminate with a traction-free edge, as shown in Fig. 1. The
laminate consists of layers of uniform thickness orthotropic material. Each layer may be
oriented at an arbitrary angle in the x—y plane. In the laminate coordinate system, the
constitutive equations for an individual layer may be expressed by the generalized Hooke’s
law in contracted notation as

rall (S Sz Sy 0 0 Snﬂ raq (o
& Sz S S 0 0 Sy 0 LF]

) g3 [, _ Sz Sy Six 0 0 S5 o, [ oty AT 0
84 0 0 0 S4 S5 O 04 0 ’
€5 0 0 0 S S5 O o 0

L&6 ) Sie S S3s 0 0 Ses] Los L6

where §); are terms of the transformed compliance matrix, «; are the transformed thermal
expansion coefficients and AT is the temperature change from a reference, stress-free
condition.

The stress boundary conditions for the problem are as follows:

02:04=06=0 aty=0,b

0330'4:05:0 at z = -_}-h/2. (2)
The laminate is assumed to be in a state of plane strain in the x direction. The concept of
plane strain is generalized to allow for a specified value of ¢,. Under these assumptions, the
axial stress can be found from

U =23,6). 3)

o, = (&, —,AT—S;06))/Sy,
In (3), and the equations that follow, tensor summation rules are assumed. The constant
value of ¢, can be reflected in the generalized Hooke’s law by rearranging (1) into the
following form:

~ i1

S;
S‘G}"‘}‘MS]‘;"&IAT (i,j=2,3,..-,6),

£ = 4
S, “)
where
S Sil Sl 3 ~ Sli
Sy = S~ c, di=w— oo
= Sy So & =a s, o &)
Two nondimensional coordinates are introduced :
n=zlh, &=ylh (6)

The Lekhnitskii stress functions (Lekhnitskii, 1968) are used to ensure pointwise equi-
librium. These are defined by
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We will approximate the stress functions using the following series
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The superscript Roman numerical gives the order of differentiation of the function with
respect to the function’s argument. Although the series for F and W can be defined inde-
pendently, using the derivative of g(n) from the F series as the n function in the W series
will lead to certain simplifications in later expressions. In the development that follows, we
will assume that g(x) is a known function that satisfies the stress boundary conditions for
the problem at n = +1/2.

The governing equations are obtained by taking the stationary value of the comp-
lementary strain energy

oU = ffséa dydz

=fj[aigﬁéaj+(slsillsll+di)6aj] dfdﬂ=0 (i,j=2,3,...,6). (9)

Next, the stress functions (7) and their series expansions (8) are substituted into (9).
Repeated integration by parts is then applied to obtain

j[a,‘j“’f}v +aP M +aP f,+bP pl + b p, 416 f:dE

+J[c,‘-,”p,‘-'+c§,~"’p,-+b,‘-f b fi+s10pdé =0 (,j=1,2,...,n), (10)

where
12 B 1/2 . .
a’ = J " S339:9,dn bip = “J " (S36+S4s5)gig;dn
1/2 . . f1/2 .
a:(jz) = “f 2 (2523+S44)g.!g} dn btg.zp) = 2 526%"9;1 dn
2 112
ap) = J S2,9"' g} dn rp= (81812/S\1 +d2)g)' dn
_i2 J-2
/2 i f1/2
of) = -J ) Sssgig;dn 8 = 2 (61516/S11+de)g) dn
1/2 .
e =J , Sesdi'g; dn. (b

In taking these integrations, it is recognized that the S,, terms are stepwise functions of z
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that depend on the local layer material properties and orientation. The boundary condition
terms generated by the integration by parts vanish because we have assumed that g(n)
identically satisfies the traction-free conditions on the laminate surfaces.

Because J f and dp are arbitrary variations, the quantities inside the square brackets
must vanish for eqn (10) to be satisfied. Thus, eqn (10) leads to a series of coupled, ordinary
differential equations in f;(£) and p;(£). Solutions for the homogeneous system are of the
form

f;‘ = Uif eaé’ P = U[P eaé. (]2)
Substituting (12) into (10) results in the following system of linear algebraic equations:

0 2 2,44 " [5 2102
a,%’vf—i-(a,g}—{-a a,fj))vf +(b§j’+oz b,g’)vj? =0
0 2y, 1 0 2 (2
b,‘-j )vjf+b§j ’vf +(c,‘,~’+a c§, ’)v}’ =0

ol —of" =0 (G,j=1,2,...,n). 13)
The last expression in (13) comes from introducing a dummy variable such that
:u = Uif" e, (14)

Equation (13) can be solved as an eigensystem, with a? as the eigenvalue and the v
coefficients forming the eigenvector. To simplify the remaining derivation, we assume that
the y dimension of the laminate is large compared to the z dimension. The origin of the &
coordinate shown in Fig. 1 is located at the free edge of the laminate. Thus, we are seeking
functions that decay with increasing &. This is conveniently done by taking only the negative
roots of . Equation (13) results in 37 eigenvalues. The complete homogeneous solution
is given by the linear superposition of all 3n terms as follows:

W =yl e %
P =uvire v (i=12,...,n,(=12,...,3n), (15)
where ¢; are constants which will be determined by the boundary conditions.

A particular solution can be constructed by assuming (&) and p,(¢) are constants.
These constants are found by solving the following linear system of equations:

0 ad 0 P
S+ HP = =
PSP 4+PpP = —5; (4,j=1,2,...,n). (16)

The particular solution can be identifed as a series approximation to the classical lamination
theory stresses. The total solution is then

fi= S+ 1P
P;=P§H)+P§P) (i=12,...,n). amn
The final step is to satisfy the boundary conditions ¢, = ¢, = 65 = 0 at y = 0. These
conditions are met for all by solving the following system of equations for ¢;:
vhty=—fP
vga;ti = O
vhty = —pP (i=1,2,...,m,(=12,...,3n). (18)
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An alternative solution procedure is suggested by Tang (1975). Instead of finding a
particular solution in terms of the series approximation, classical lamination theory is
assumned in the interior of the laminate. Then, instead of (18), the boundary conditions are
found by equating the left-hand side of (18) to weighted integrals of the lamination theory
stresses, taking advantage of the orthogonality of the assumed series. This approach satisfies
compatability in the laminate interior, but satisfies the boundary conditions only in an
average sense.

Finally, from (7), the stress components are given by the following double summations:

0y = twfe™ gl )+ 1" g (n)

2 2
oy = ol t;vfe % gi(n)

o4= —a;t;pfe % gl(n)
os= —at;phe"% gi(n)
. tjvlf,}e“aié g,!l(r]) +p’§p)g}l(n) (i=12,....,n,(G=12,...,3n). (19)

An admissible series of functions for g(n) must have the following characteristics. First,
the functions and their first derivatives must equal zero at n = +1/2 in order to satisfy
the stress boundary conditions. Second, the series must be complete in order to ensure
convergence. Finally, it is desirable that the series be orthogonal. One choice for the series
is suggested by the solution for the free vibration of a clamped-clamped beam. The
solution to a vibration problem is naturally orthogonal, and the clamped-clamped boundary
conditions meet the stated requirements at the endpoints. For symmetric laminates, only
the even functions from the complete series need to be included. These are

g:(n) = cos (Bn) +k; cosh (B; ), (20)

where
k; = —cos(B,/2) sech (8;/2) (21

and f; are given by the roots of the equation
cosh (8/2) sin (8/2) +cos (§/2) sinh (§/2) = 0. (22)

Equation (20) can be shown to be orthogonal. Similar functions can be constructed for the
antisymmetric and general laminate cases. Care must be taken in numerically evaluating
these functions to avoid problems with overflow or round-off.

3. EXAMPLES

3.1. [0/90}s laminate

The [0/90]s laminate is a reference case examined in many previous studies. For
comparison purposes, many of the results in the literature are based on the following
assumed material properties for graphite/epoxy:

E, =20x10°psi, E,=E, =21x10°psi
G, =G, = G, = 0.85 x 10 psi

Vp = Vyp = ¥, = 0.21
oy .

=0.22x 10" %in/in/°F, a, = 15.2x 107 *in/in/°F,
where x, y and z refer to the fiber, transverse and thickness directions, respectively. «, and
¢, are thermal expansion coefficients. These properties were used in all of the following
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Fig. 2. 6, along centerline of [0/90]5 laminate (z/A = 0.0).

example cases. However, experimental data indicate that G,, # G,. and v,, # v,. (Knight,
1982) for real graphite/epoxy.

Figure 2 shows the distribution of o, stress at the midplane of the laminate for an
applied axial strain. Three different values were used for the number of terms in the series
(n = 4,8, 12). The results rapidly converge to a constant value that is in excellent agreement
with previously reported results as n increases. Spilker (1980), for example, reported a peak
value for a5 at this interface of 0.285 psi. Results from Pagano (1978) are also plotted for
comparison. In Pagano’s work, the parameter N refers to the number of sublayers used to
model one-half of the laminate. For plots of stress versus the y coordinate, we have changed
the coordinate system origin and normalization to match the scale used in earlier papers.
In this system, the origin of y lies eight ply thicknesses from the edge, and y is normalized
by a width equal to eight ply thicknesses. The a, component at the 0/90 interface is shown
in Fig. 3. Here, the singular nature of the stresses at the material interface is evident, with
the peak stress steadily increasing as the number of terms increases.

More complex behavior is evident when the ¢, component is plotted for y = 0 (exactly
at the free edge), as shown in Fig. 4. There is a peak value of stress that occurs near the
0/90 interface that appears to be increasing without limit as the number of terms increases,
reflecting the singular nature of the stresses at that point. The harmonic series representation
of this sudden peak causes oscillations to appear elsewhere in the distribution, much as a
Fourier series oscillates when approximating a sudden discontinuity in a function. As will
be shown below in the discussion of quasi-isotropic laminates, these oscillations decay
rapidly as y increases and are not a factor when an average stress criterion is used. Figure
4 compares favorably with similar plots given by Sandu ez al. (1991), Wang and Crossman
(1977), and Spilker (1980). Results from Sandu’s work are reproduced in Fig. 4. These
results were generated with a finite element model which used 288 continuous traction

0.25
r Z —~————— 4Tems !"‘,
: 02l T ———- 8Terms /'!
“"3 _’1'_ Yo 12 Terms /, ,*l|
2 o015 F—b=2hnh—] —-—-— Pagano (1978) ]
| N=6
o
o 0.1
T
0.05¢}
0

0.2 0.4 0.6 0.8 1
y/b

Fig. 3. o, along 0/90 interface of [0/90] laminate (z/A = 0.25).
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Fig. 4. o, at free edge (y = 0) of [0/90]s laminate.

elements. Also shown are results obtained from the force-balance method by Kassapoglou
and Lagace (1986). This method gives a rough approximation for the midplane stress
(z = 0), but cannot match the details of the distribution obtained by using less restrictive
assumptions.

3.2. [45/—45]s laminate

The [45/—45]s laminate is another standard case examined by several researchers. The
o5 component at the 45/—45 interface is given in Fig. 5. The peak value seems to be
increasing without limit as the number of terms increases, but the distribution immediately
beyond the edge converges rapidly. Results from Pagano (1978) are shown for comparison.
The distributions for ¢, and o, are shown in Fig. 6 (computed for n = 12). These dis-
tributions can be compared with those given by Sandu et al. (1991) and Wang and Choi
(1982). The distribution of the ¢; component has the same sign and shape as that given by
Wang and Choi, but the peak value is substantially less (0.17 versus 0.4).

3.3. Quasi-isotropic laminates
The quasi-isotropic laminates will be used to demonstrate the application of the method
to practical laminates, and to address the issue of convergence. Clearly, an approximate

2.25 ]
z .
2.00 ——— 4Terms |
T r
1.7 h y 8 Terms |
g L ———- 12Terms i’
® 1.5} Fb=2n—] ‘
e —--—-— Pagano (1978) I
x 1.25 N=6 /
é- 1}
0 1t
v 0.75
0.5
0.25
0
0 0.2 0.4 0.6 0.8 1

yo

Fig. 5. o5 along 45/ —45 interface of [45/—45)s laminate (z/h = 0.25).
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Fig. 6. v, and o, along 45/ —45 interface of [45/—435) laminate (z/h = 0.25).

solution such as this that does not represent the stress singularities cannot be expected to
converge exactly in any meaningful way at the free edge. Kim and Soni (1984, 1986) have
suggested a delamination initiation criterion based on the average stress taken over an
interval starting at the edge and going to an empirically determined distance from the edge.
An integration distance of one ply thickness was used by Kim and Soni. Thus, a practical
measure of convergence is to examine how the average stress components approach a
constant value as # increases.

The average o, stress for a [45/ —45/0/90]s laminate is shown in Fig. 7 for n = 4, 8 and
12. The plot shows that the stresses for n = 9 and » = 12 are nearly identical. A similar plot
for the o5 component is given in Fig. 8. The averaging distance was equal to one ply
thickness. For this case, the force-balance method is in good agreement with the present
method.

The present solution method sacrifices an exact match to lamination theory in the
interior of the laminate in order to satisfy the free-edge boundary conditions exactly. Figure
9 shows how the particular part of the series solution (n = 12) approaches the lamination
theory result for the eight-ply quasi-isotropic laminate far from the edge. With 12 terms,
the series approximation can only roughly approximate the stepwise changes in the interior
in-plane stresses. However, the continuous interlaminar stresses, which are the problem of
interest, converge much faster.

The average o, stress for a [45/—45/0/90],¢ laminate is shown in Fig. 10 forn = 12,
16 and 20. The plot shows that the stresses for n = 16 and » = 20 are nearly identical. These
limited results indicate that the number of terms needs to be approximately equal to the

05}
4 Terms
0.4}t \ e v e — 8 TOIrms
--------- 12 Terms
0.3} . —-— Force Balance Mothod
z/h \‘w\\
0.2} \s\.\\\
\\,\~
\N
0.1} \‘\
. \ \\‘
\“ \
Y LY
of, . . . . LIRS
0 0.25 0.5 0.75 1 1.25 1.5

Ggley x10 ®psi

Fig. 7. Average o, taken over interval y/k = 0 to y/h = 1/8 for [45/ —45/0/90]s laminate.
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Fig. 9. o, calculated from present solution and classical lamination theory at interior of laminate
(y/h = o) for [45/—45/0/90] laminate ; n = 8.
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Fig. 10. Average o, taken over interval y/i = 0 to y/h = 1/16 for [45/—45/0/90],; laminate.
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Fig. 11. a, for upper half of [45/—45/0/90],¢ laminate; n = 16.

number of plies for the average stresses to converge to constant values. For this repeating
stacking sequence, the force-balance method gives a different stress distribution. A repeating
stack should result in a stress distribution that repeats to a first approximation (Whitcomb,
1984), but the assumptions built into the force-balance method preclude this behavior.

The complexity of the full ¢ distribution as obtained by the present method is shown
in Fig. 11. Sixteen terms were used to create this plot.

In order to predict delamination initiation, the residual stresses resulting from cure
must also be considered. Figure 12 shows the distribution of average o stress for the
[45/ —45/90/0],5 laminate due to residual thermal stress alone. For this laminate, the location
of the peaks coincides with the peaks for the mechanically loaded case. In addition, the
magnitude of the peaks are a significant fraction of the matrix strength (approximately 7.5
ksi). Thus, thermal effects would need to be included in a failure prediction.

4. CONCLUSIONS

A relatively simple and efficient method has been demonstrated for determining the
stresses near the free edge of general composite laminates. Based on an average stress
convergence criterion, a 16-ply laminate was analyzed using 16 terms in the series. In the
solution procedure, a 16-term series requires that the eigenvalues of a 48 x 48 matrix must
be determined, along with a 48 x 48 system of linear equations. Thus, the computational

z/h
}

0.5
4

0.3
0.2
<

\\

500 1000 1500

Gz psi

Fig. 12. Average o, in [45/—45/90/0],5 laminate resulting from residual thermal stresses, assuming
AT = —200°F. Average taken over interval y/a = O to y/h = 1/16;n = 16.
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requirements are modest. In addition, no overflow problems or matrix ill-conditioning were
detected in the course of this study. The numerical results for this paper were generated on
a personal computer using the Mathematica® software (Wolfram, 1991). Because Mathem-
atica is an interpretive language, valid computer time comparisons cannot be made with
programs written in compiled languages, such as Fortran.

Although the in-plane stresses are discontinuous through the thickness of the laminate,
a series approximation for the stress functions which is continuous through the ply thickness
appears to be an effective way to estimate the interlaminar stress components (which are
continuous).

The method is powerful enough that the stress singularities at ply interfaces appear in
the results as unbounded stresses with increasing degrees-of-freedom. By using an average
stress criterion to predict delamination initiation, these unbounded stresses disappear and
convergence to constant values is rapid.
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